我公司专业技术论文在《电网与清洁能源》杂志获得发表
近日,从中国《电网与清洁能源》杂志社传来喜讯,我公司产品部员工陶玉飞发表的题为《风电场风速预测模型研究》(作者:陶玉飞、李伟宏、杨喜峰)的专业技术论文获得刊载。《电网与清洁能源》杂志是《中国学术期刊》规范执行的优秀期刊,也是《中国核心期刊(遴选)数据库》收录的期刊。
此论文的公开发表,进一步扩大了公司在行业内的影响,为公司争得荣誉。在此向陶玉飞表示祝贺!同时公司也希望其他员工以此为榜样多向国内外杂志期刊发表专业论文。
论文摘要:本文介绍了两种风电场风速预测的模型,分别是bp神经网络模型和小波-bp神经网络组合模型。bp神经网络模型是风速预测中常用的模型之一,小波技术和bp神经网络结合,即为组合模型。小波技术将风速时间序列按时间和频率两个方向展开,体现了各成分对预测值贡献率的不同。将bp神经网络模型和小波-bp神经网络组合模型分别应用到我国朱日和风电场的逐时风速预测中,从预测结果对比二者,可以得出组合模型更适合该风电场的逐时风速的预测。
关键词:风电场;风速;预测模型;bp神经网络;小波
abstract: this paper introduces two prediction models of wind speed in wind farm, bp neural network model and combined model of wavelet and bp neural network respectively. bp neural network model is one of the prediction common models, and the combined model is established with wavelet technology and bp neural network method. the wind time series is decomposed into two parts by wavelet technology, which have different contribution ratios to the prediction results. the two models are established with the data of hourly wind speed in zhurihe wind farm. according to the prediction results, we can know that the combined model is more suitable for the prediction of hourly wind speed in wind farm.
key words: wind farm; wind speed; prediction model; bp neural network; wavelet